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ABSTRACT

We consider (prediction) markets where myopic agents se-
quentially interact with an automated market maker. We
show a broad negative result: by varying the order of par-
ticipation, the market’s aggregate prediction can converge
to an arbitrary value. In other words, markets may fail to
do any meaningful belief aggregation. On the positive side,
we show that under a random participation model, steady
state prices equal those of the traditional static prediction
market model. We discuss applications of our results to the
failure of the 1996 Iowa Electronic Market.
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1. INTRODUCTION

Prediction markets are markets that trade on future events;
by aligning traders’ incentives with the elicitation of infor-
mation, they can produce very accurate forecasts. The best
example of this has been the success of the most venerable
prediction market, the lowa Electronic Markets. These mar-
kets, administered by academics at the University of Iowa,
have consistently produced more accurate predictions for
elections than polls or aggregates of polls—often months in
advance of the actual vote [Berg et al., 2001].

One of the most notable aspects of markets is their se-
quentiality. Prices are constantly in flux as traders emerge,
interact, and exit. Examining traders’ behavioral incentives
in markets (e.g., to bluff, withhold information, learn, or re-
veal truthfully) and the impact of those actions on observed
prices is a topic of considerable recent research:

e Feigenbaum et al. [2003] examine an iterated market
in which perfectly rational traders, each endowed with
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a bit of information, submit posterior trades of their
expectation of a boolean function based on those bits.
They exactly characterize the space of functions for
which prices will converge to the correct value, such
that all agents will adopt the posterior. Those func-
tions are weighted threshold functions. In order to
subvert the famous no-trade theorem of Milgrom and
Stokey [1982], which would apply to the perfectly ra-
tional traders in this setting, traders are compelled
(forced) to submit exactly their posterior in every round.

Chen et al. [2007] show that, if agents receive condi-
tionally independent signals, it is an equilibrium to se-
quentially adjust market prices to their posterior (given
their signal and previous market prices) at an agent’s
first opportunity when interacting with an automated
market maker. It is well known that an automated
market maker encourages direct, truthful reporting by
myopic players, but their result is interesting because
it applies also to more sophisticated agents. Conver-
gence to a common posterior is implicit in this result.
They also show that if the signals agents receive about
the true state of the world are conditionally depen-
dent, then the solution concept falls apart and a range
of strategic behavior can emerge.

Dimitrov and Sami [2008] examines strategic play by
agents in a setting where a range of strategic behavior
is allowed. They show converging equilibrium prices,
but only in a relatively simple two-state two-agent
model and only with the imposition of a discount fac-
tor.

Ostrovsky [2009] exactly characterizes the set of secu-
rities for which every Bayesian perfect equilibrium ag-
gregates information for all possible prior distributions
of trader information. Their results do not rely on the
independence of prior signals or on the imposition of
a discount factor, and hold for any number of agents.
However, the work is fundamentally nonconstructive;
the existence of such BPE is not proven.

Shi et al. [2009] offer a compelling description of a pre-
diction market populated by simple traders. Within
a traditional market interpretation of their one-round
prediction mechanism, agents act to change market
prices to reflect their private beliefs, participate ex-
actly once according to some (pre-determined) order,
and are unaffected by both the actions of past agents
as well as the possibility of action from future agents.



Since agents are not budget constrained and the mar-
ket interpretation of the one-round prediction mech-
anism is so simple, the observed prices from such a
scheme are quite trivial; prices are simply the private
belief of the last agent to participate in the market.

In some models of interaction prices converge toward a
shared posterior consensus. However, recent research by
Graefe and Armstrong [2008] has suggested that models of
markets converging towards a shared posterior consensus are
a poor fit for real interactions among human traders. In the
laboratory market experiments they studied, most partici-
pants thought (incorrectly) that they could achieve a higher
payoff by changing, rather than accepting, the final price
reached in their experimental market. Traders did not em-
brace the final market price as a universal consensus, they
were simply unable to change the final price because of bud-
get constraints.

Another stream of economic research suggests, however,
that markets need not reach a shared consensus among ratio-
nal traders to produce desirable results. In particular, the
famous Hayek hypothesis contends that markets are good
aggregators of information even if participants are unsophis-
ticated [Smith, 1982]. An interesting test of this hypothesis
was performed by Gode and Sunder [1993], who examined
how simple computational agents can produce market prices
very close to those observed from profit-motivated human
traders. Their work introduced the concept of Zero Intelli-
gence (ZI) agents, who do not remember past actions, learn,
or attempt to maximize their utility.

In the vein of examining the emergent properties from
the interaction of simple traders, work by Manski [2006] has
contended that markets populated by simple traders should
reach roughly informative price predictions. Manski demon-
strated that a market composed of simple, budget-limited
agents should produce roughly efficient prices, though we
should expect prices to exhibit the longshot bias, whereby
less likely events (longshots) are overpriced and more likely
events are underpriced. This prediction has been validated
by several quantitative studies of prediction market data
[Wolfers and Zitzewitz, 2006, Corwin and Othman, 2008].
More recent work by Othman [2008] that simulates the in-
teractions of bids and asks in a standard double auction
shows that expected transaction price (i.e., the mean price
at which a trade occurs) with ZI traders should be close to
the predictions of Manski’s model, although actual expected
prices have no simple closed form and are the product of a
complex iterated integral. Our work moves these simple
static models into a more realistic dynamic setting.

What can observed prices look like over time when sim-
ple agents interact? We construct two different interaction
models that parallel the classic worst-case and average-case
dichotomy from the analysis of algorithms. We show that
under an adversarial ordering model, market prices can be
arbitrarily uninformative. In contrast, we also show that un-
der a random ordering model, we should expect the market
prices we observe to be informative—to be close to equi-
librium prices in Manski’s standard static model of price
formation. We discuss how our results are consistent with
the performance of the 1996 Iowa Electronic Market, per-
haps the most notable failure of prediction markets in prac-
tice [Berg et al., 2001].

866

2. MODELING MARKETS AND AGENTS

We begin by discussing how our market model works, and
then how the agents in our model interact with the market.

2.1 Pricing rules

The markets we consider can be regarded as stylized ab-
stractions of a broad class of actual, real-world markets.
This paper only considers markets over binary events, which
involve a partition over the future into two exhaustive sets.
An example is a contract that pays a dollar if Manchester
United defeats Arsenal in their next match. Prices in mar-
kets for binary events can be specified by a single scalar
value, because no-arbitrage conditions imply the price for
the complementary event.

We consider interaction with the market through the me-
diation of a market maker operating according to a pricing
rule. The pricing rule defines a structured way of adjusting
prices in response to instantaneous aggregate demand; it is a
function, p(q), that maps from aggregate demand to a price.
Note that the price offered by the market maker is valid only
for the purchase or sale of an infinitesimal quantity; as the
agent interacts with the market maker, the price changes.
This is why we say that pricing rules work based on instan-
taneous aggregate demand—the prices change instantly in
response to demands.

Another way of looking at our structure is that it is anal-
ogous to a bookmaker setting a line for a match. The book-
maker seeks to equalize the number of dollars on each side of
his proposition, so that if he sees too many bets on one team
he adjusts his line, making further investment in that team
necessarily riskier. A bookmaker makes money through the
vigorish (bid/ask spread) he fixes when taking bets. A pric-
ing rule can be considered the bookmaker’s behavior in the
limit as the bid/ask spread approaches 0.

Some existing prediction markets fall within our model
exactly. Traditional two-sided markets clearly do not op-
erate this way, but our model is a good abstraction away
for analyzing one fundamental concept, that of slippage. In
a traditional market, an agent cannot purchase an unlim-
ited quantity of goods at the lowest asking price. Rather,
as he purchases more, ask orders are exhausted and the
asking price will rise, causing the agent’s expected gain to
“slip”. Pricing rules capture this intuition while providing a
tractable formalism for how prices change. Slippage is such
a fundamental notion to our understanding markets that
automated market makers can be considered qualitatively
(though not quantitatively) identical to traditional double
auction models [Ostrovsky, 2009].

Not all functions make good or logical pricing rules. In
this work, we only consider rules that satisfy technical con-
ditions that fit a reasonable interpretation of how markets
should work. We call such rules normal.

Definition 1. A normal pricing rule is a function p(q) that
is continuously differentiable, strictly increasing, and onto
(0,1).

Agents interact in the marketplace by spending their money
to obtain shares that will have value at expiry. Say an agent
seeks to move the market from g aggregate demand to ¢’ > ¢
aggregate demand (he is betting for the event in question to



occur). The agent pays

/qq p(q) dg

and receives a payout of ¢’ —¢q dollars if the event in question
occurs. Now consider an agent wishing to bet against the
event, moving the aggregate demand from ¢ to ¢’ < ¢. That

agent pays
/q
q//

and receives a payout of ¢ — ¢” if the event in question does
not occur. We denote by c¢(p,p’) the net cost of moving the
market from price p to price p’. An agent who moves the
market from price p to price p’ and then back to price p has
no expected benefit and no net cost—his costs are precisely
equal to the payout he is guaranteed to receive regardless of
whether the event occurs or not.

One property of pricing rules is that they are history-
independent. The market maker will adjust prices based
only on the current price, regardless of whether that price
was generated after the participation of five agents or five
thousand agents.

Because a normal pricing rule is strictly increasing, it is
invertible. We denote the inverse of the pricing rule as q(p).
The difference in outstanding coupons (or shares) to be re-
deemed if the event in question occurs between a price of p
and a price of p’ is given by q(p) — q(p’).

1 —p(q)dq

PROPOSITION 1. [t takes a finite amount of money to
move a normal pricing rule from any initial price in (0,1)
to any other price in (0,1).

PrOOF. The net cost of changing the market between two
prices is bounded above by the difference in quantities asso-
ciated with each price. Because the rule is onto (0, 1), this
difference in quantities in necessarily finite. ]

We consider all markets as starting from an initial point
of .5. Given a normal pricing rule, such a consideration is
without loss of generality for our results.

2.2 Agent actions and beliefs

Agents are myopic and act according to three guidelines:

1. Agents have fixed beliefs about the value of a contract
and are risk neutral.

2. Agents have a fixed, finite budget.

3. Agents participate exactly once, acting in the market
and then exiting.

These assumptions are found widely throughout the lit-
erature. For instance, Shi et al. [2009] explores and justi-
fies a model where agents follow the first and third proper-
ties (but the agents in their work implicitly have arbitrarily
large budgets). Lambert et al. [2008] explore and justify
a model where agents follow the first and second proper-
ties, but their agents cannot follow the third because the
self-financed wagering mechanism they investigate is not an
explicitly sequential market. Similarly, Manski [2006] and
Othman [2008] both use the first two assumptions, but their
static models rule out the third.
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3. MARKET FAILURE AND UNINFORMA -
TIVE PRICES

This paper investigates the results of different orderings of
agents participating in markets. We denote by p(o) the price
after the participation of all agents in the specified order o,
and we denote by pi(0) the observed price after the first k
agents in the ordering o participate.

We are now ready to give our main results regarding how
participation order affects prices. One might hope that re-
gardless of agent ordering, the final price we observe after
the participation of all the agents will be roughly the same.
We show that this is not the case. With as few as two agents
we can see final prices that diverge arbitrarily.

PROPOSITION 2. For any € > 0, there exists a set of two
agents with finite budgets such that |p({1,2}) — p({2,1})] >
1—e

PROOF. Let both agents have a budget of max{c(1 —
€/2,€/2),c(e/2,1 —€/2)} with beliefs by = €/2,b, =1 —€/2.
Then the participation order {1,2} yields a market price of
1 —¢/2, while the participation order {2,1} yields a market
price of /2. |

In this example, not only do agent valuations change with
€, but the market in Proposition 2 is the smallest possible—
only two agents. A skeptic could take the position that a
large market with many agents will not suffer from these
problems. Indeed, there is a fair amount of literature that
suggests large, diverse prediction markets will be success-
ful (e.g. [Surowiecki, 2004]), and on a more abstract level
the concept of a “thick market” is associated with efficiency
[Plott and Sunder, 1988, Yeh and Chen, 2001, Gan and Li,
2004].

In contrast to this intuition, our next result shows how
prices in large markets can be uninformative. In particular,
by changing the participation order of a set of agents, prices
can converge to any arbitrary value. Every agent still acts in
the market, all that changes is the order in which they do so.
This is a surprising result that suggests conceptions of effi-
ciency in large, dynamic markets do not carry a theoretical
basis.

PROPOSITION 3. There exists a countable set of agents
with equal budgets such that, for all € > 0 and z € (0,1),
there exists a budget amount b, participation order o and
finite T' such that for all t > T, |pi(o) — x| < e.

Proor. Without loss of generality, we force e small enough
so that 0 < x —e < x + € < 1. If the given € is too large, we
simply satisfy a tighter bound.

Agents have valuations corresponding to unsimplified ra-
tional numbers; that is, for every ordered pair of positive
integers p < ¢ there is an agent with value p/q. Now divide
agents into three regions, as in Figure 1.

One region consists of all agents with values p/q such that
x—¢/2 < x < x+€/2. The other two regions are those agents
with values above and below this region. We will refer to the
three regions as the “upper”, “middle”, and “lower” regions.
Note that each of the number of agents with valuations in
each of these regions is countable, and as such there exists a
mapping between agents with valuations in each region and
the positive integers.

Endow every agent a budget of min{c(z—¢/2,z—¢), c(z+
€/2,x+¢€)}. Our ordering process is as follows: First, we will



p

Agent Values: p/q

Green Area: Middle Region
X+&/2
X
x—g/2

Figure 1: The three regions used in the proof of Proposition
3.

take agents from the middle region until the current price
is between x — ¢/2 and x + ¢/2, which will take a finite
number of steps. Then, we will take agents in a specified
order, ensuring both that every agent will visit the market
and that prices remain within our bound.

By corollary 1, it takes only a finite amount of money to
move the observed market price to any arbitrary value of
(0,1). As a result, after a finite number of agents in the
middle region participate, the observed market price will be
between z — ¢/2 and = + €/2, the middle range.

Once prices enter the middle region, agents repeat the
participation order described below ad infinitum:

1. The next agent from the upper region participates.

2. At least one agent in the middle region participates.
Participation of further agents ceases when the current
price is between = — €/2 and x + €/2.

3. The next agent from the lower region participates.

4. At least one agent in the middle region participates.
Participation of further agents ceases when the current
price is between = — €/2 and x + €/2.

Now provided that the initial starting price is between
x—e¢/2 and x+¢€/2, the observed price after the participation
of any agent will not be more than e¢ away from xz. By
construction of the budgets, a single agent will be able to
take a price from = — ¢/2 to x — €, or © + ¢/2 to x + €. But
after the participation of agents from the middle region, the
observed price will move to within the middle region again.

Finally, every agent will participate in the market. In each
cycle at least one agent from each region participates. Since
the regions are countable, it follows that by repeating the
process ad infinitum, every agent will eventually participate.
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Price: p+ax* q

Increase in price:
0—!“

Slope of pricing rule: a

Area of Shape =
Amount Spent

—
Quantity obtained:
%

Figure 2: An agent with belief greater than p raises the

price by ax™.

4. INFORMATIVE PRICES AND THE STAN-

DARD STATIC MODEL

In this section, we show there is a sense in which large
markets achieve a level of efficiency, so that their outcomes
are not arbitrary with respect to the underlying distribution
of agent beliefs.

Definition 2. In the e-tweak process, agents interact with
the market maker with uniform probability and spend € — 0
dollars at each interaction.

PROPOSITION 4. Let agent valuations be distributed ac-
cording to the continuous, gapless distribution F(-). With
the use of any mormal pricing rule, the unique fized point of
the e-tweak process is the p* that satisfies p* =1 — F(p*).

PrOOF. Let us investigate the forces at play given the
current price p € (0,1). Since the pricing rule is differen-
tiable, we can approximate the price function locally by a
line with slope «, and since the pricing rule is strictly in-
creasing, a > 0.

As shown by figure 2, the result of an agent with belief
greater than p interacting in the marketplace is to raise the
price by az™, where 2T satisfies

T (p+azt/2) =¢
This solves to
azt =/20e+p>—p

Now consider

dax™ (e,p) a
e V2ae + p?

And evaluating at € =0
daxt(0,p) _ «a

Ode P

Now by similar, symmetric reasoning, the result of an
agent with belief less than p interacting with the market
lowers the price by azx™, where

ar ((1—p)+ax /2)=¢



And by repeating the above steps with = we have

dox—(0,p) _
Oe S 1-p
The expectation of the price movement in the e-tweak pro-
cess is the expectation of the result of an individual with a
belief moving the market times the probability that individ-
ual is selected. Thus, the expectation of the price movement
e-tweak process is

The only p* that makes this expression equal to 0 is
p"=1-F(p").

«

)

_l—p

The assumption that this is a large market is implied by
the existence of a continuous valuation distribution, as well
as the implication that there exists enough money invested
in the market to move prices to the attractive fixed point.
The significance of this result is that the equilibrium price
of our dynamic model is identical to the unique equilibrium
of the standard static model of prediction markets.

Definition 3. The standard static model of prediction mar-
kets involves a pool of risk-neutral traders with uniform
wealth and a Walrasian market maker who sets a single price
to balance supply and demand. The equilibrium price in this
model is the p* such that p* =1 — F(p*) [Manski, 2006].

To briefly explain the model of Manski [2006], a risk-
neutral trader will always maximize their holdings, spend-
ing their entire endowment either for or against a contract
depending on their private belief and the price offered. Let-
ting traders all have unit wealth and setting price p, a trader
with belief b; > p will buy 1/p shares, while a trader with
belief b; < p will sell 1/(1 — p) shares. To balance supply
and demand, then, the auctioneer sets the price p* so that
pr=1-F@p).

COROLLARY 1. The fized point of the e-tweak process is
identical to the price set by the Walrasian market maker in
the standard static model of prediction markets.

Because p can only be an equilibrium price if it represents
the 1 — p-th percentile of beliefs, this fixed point is not nec-
essarily as informative as we might hope. An equilibrium
price of 50 cents could indicate a mean of beliefs anywhere
between 25 and 75 cents. Moreover, the 1 — p-th percentile
of beliefs is above the median (and, generally, the mean) for
p < .5, and below the median (and mean) for p > .5. The
result is a longshot bias, where unlikely events are overpriced
and likely events are underpriced. Empirical studies of pre-
diction market data have shown that prices are generally
efficient but that there exists a small but statistically sig-
nificant longshot bias. Wolfers and Zitzewitz [2006] demon-
strate the bias on Iowa Electronic Market data on political
elections, while Corwin and Othman [2008] demonstrate the
bias on data from betting on professional basketball games.

4.1 What causes informative prices?

There are two differences between the e-tweak model and
the previous model of naive behavior. The first is that agents
participate in random order, and the second is that agents
spend infinitesimal amounts when they participate. We may
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ask which of these effects is more responsible for producing
a good result. Put another way, imagine an adversary intent
on making the result of our market uninformative gives us
a choice between two options:

e He can order participation to his choosing, but agents
spend a vanishingly small amount each time they par-
ticipate.

e Agents participate randomly, but spend their entire
budgets.

Which of these setups will most confound our adversary?

The answer is the second. In the first plan, our adversary
could simulate the negative results of the previous section
by having agents move again and again in small increments.
On the other hand, the fixed point of having agents move
in a random order but exhausting their entire budgets is
identical to the one in which they spend a vanishingly small
amount, with two differences:

1. The pricing rule is linear only for small investments,
as an approximation facilitated by its differentiability.
For larger investments it may curve, which will result
in agents getting more (or less) quantity than would
be expected from a linear approximation to the pricing
rule.

2. For non-infinitesimal investments, a non-vanishing por-
tion of the agent pool may reach their valuations before
they have spent all their money in the market. As a
result, they will not move the market as much, in ag-
gregate, as they may be expected to under the e-tweak
process.

These effects destabilize the fixed point of the e-tweak pro-
cess we explored in this section, which was both unique and
attractive. But these effects are second order in the true
mathematical sense of the term. As a result, we can expect
that the fixed point(s) of a random, full budget expenditure
process will be close to p* =1 — F(p*). Though a full bud-
get expenditure process may have a fixed point, the actual
observed price at any instant could be quite far from this
value. The deviation depends on the ability of an individual
agent to move the market a significant amount by their par-
ticipation. The closer agents get to not being able to greatly
impact market prices with their individual expenditure, the
closer we should expect the actual observed price to be close
to the informative fixed point.

5. ORDERING PROBLEMS IN PRACTICE

We have demonstrated that the order in which agents par-
ticipate can lead to market prices that are arbitrarily unrep-
resentative of underlying beliefs. But this does not mean we
should expect to see unrepresentative markets in practice,
particularly because Proposition 4 suggests that the ran-
dom participation of large numbers of agents does produce
meaningful prices. What our results do suggest is that pre-
diction markets can become unhinged. In this section, we
argue that the failure of the 1996 IEM vote-share market is
consistent with agent ordering skewing the final outcome.

The market offered contracts in the two candidates, Clin-
ton and Dole, with shares that paid out at the percentage
of the two-party vote share each candidate received. Unfor-
tunately, we only have access to daily summary prices; the
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Figure 3: FEstimated margin of victory for Clinton over
the last hundred days before the election in the 1996 IEM
vote-share market. For reference, Clinton’s actual margin of
victory is given by the straight line. Time proceeds from left
to right.

full trading data from the markets is proprietary to the IEM
researchers. Regarding the 1996 market, those researchers
have said:

[IJn 1996, the market diverged from the correct
outcome in the final days to close at midnight on
the eve of the election with prices further from
the election outcome than they had been since
the Super Tuesday primaries in March. Appar-
ently a large cash influx by new traders late in
the campaign drove the price movement. [Berg
et al., 2001]

This quote, along with the daily trading data, constitutes
what we know about what happened in 1996.

Figure 3 plots the last hundred days of the market in terms
of Clinton winning percentage, which is given by the Clin-
ton share prices minus the Dole share price. As is evident
from the plot, prices are volatile but relatively accurate until
roughly 2-3 weeks before the election, at which point they
begin a sharp, rapid increase. At the final trade the day be-
fore the election, the market’s projected edge for Clinton was
nearly double his actual victory margin, off by almost nine
percentage points. This is an enormous error; the largest
margin of victory in a modern presidential contest was less
than 30 percentage points.

What is remarkable about this market is when the pre-
diction began to sour. The end of the 1996 campaign was
quiescent, with no major news stories or scandals breaking
in the last few weeks of the contest. If we believe, like much
of the theoretical literature contends, that market prices rep-
resent a shared posterior consensus among rational agents,
prices should have settled, not diverged, at the end of the
campaign. Theories of market efficiency would suggest ex-
actly the opposite from what happened: that prices should
perhaps be inaccurate months before the election, but as
agents learn more from each other and information shocks
play out, prices should converge towards an accurate pre-
diction. Of course, when prediction markets work as well as
they normally do, these theories are quite consistent with
the observed data.

In contrast, agent ordering predicts prices to have the
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greatest potential of being skewed at the end of trading.
Consider a group of similar but extreme-minded market par-
ticipants. How can these participants have the greatest im-
pact on the final result of a market? (We ask this question
being agnostic to whether these agents actually desire to
manipulate final or intermediate market prices.)

The answer is by participating at the end of the mar-
ket, after all the agents with different views have acted; the
participation of the other agents drives prices as low as pos-
sible for the pool of similarly-minded agents. Consequently,
our pool of traders with skewed beliefs effects the maximum
amount of deviation from the market.

Skewed Order — |
[ Random Order

0.7

0.6 |

0.5 oo s

Price

04 | |

0.3 - i

0 50 100 150 200 250 300 350 400 450
Day of Simulated Interaction

500

Figure 4: A simulation of market prices shows the im-
pacts of agent ordering. The green line is the simulated daily
prices from random participation of agents with a true belief
median and mean of 0.5. The red line is the simulated daily
prices where agents with high beliefs are skewed to partici-
pate in the last hundred simulated days. Fxactly the same
agents participate in both cases, but the final price of the
skewed ordering is much higher.

Figure 4 is the results of simulating the daily prices of a
market under two different ordering schemes. We simulate a
daily price by taking a snapshot after the participation of 25
agents with small budgets in the market. The distribution of
agent beliefs is given by a normal distribution with mean 0.5
and standard deviation 0.1. Both trading schemes consider
an identical pool of agents, but in one case the order in
which agents appear is skewed so that agents with higher
beliefs are more likely to appear in the final hundred days of
simulated trading. In particular, we probabilistically sorted
agents so that for any two agents, the probability that the
agent with higher belief participates after the agent with
lower belief is 90%. The final prices in the skewed ordering
are much higher than the final prices from random ordering.

The 1996 market is a phenomenon of natural science, and
as such we cannot prove, in the theoretical sense of the other
sections of this paper, why it failed. However, an agent or-
dering explanation is consistent with what happened in the
1996 market. Of course, our results rely on the notion of the
market possessing an automated market maker, whereas the
IEM is a traditional double auction. However, as Ostrovsky
[2009] discusses, automated market makers are good approx-
imations of traditional double auction market models, and
many results from traditional models carry over qualitatively
into automated market maker formats.

An agent ordering model suggests that most of the time,



we should expect markets to work well, but that, on occa-
sion, we can expect sharp divergences from good outcomes at
the close of contracts. The 1996 market provides a striking
example of the latter case, but the wealth of data we have
from other prediction markets—from sporting events and
political elections—suggests that this kind of failure is very
rare. Finally, the statement from IEM researchers, which
constitutes our only information about the way agents ac-
tually behaved to develop the observed prices, is entirely
consistent with agent ordering. On the other hand, a the-
ories of market efficiency would suggest that savvy traders,
particularly as prices diverged sharply from their previous
(efficient) levels, would arbitrage away the actions of these
new traders. Therefore, unlike more complex models of ra-
tional behavior, agent ordering provides a simple explana-
tion consistent with the data as to why prices in the 1996
IEM diverged in the closing weeks away from their correct
predictions.

6. CONCLUSION

Our work took a paradigm from computer science—worst-
case and average-case analysis, and applied it to the study
of pricing dynamics within prediction markets. By viewing
agent actions as inputs and market prices as outputs, we
achieved two distinct results. We showed that in the worst
case, prices can be completely uninformative, converging to
an arbitrary value. We then showed that in the average
case, we can expect prices to be close—in a precise, mathe-
matically rigorous way—to the informative equilibria of the
standard static model of prediction markets.

Our model makes predictions that are supported by real-
world studies. In particular, agent ordering provides a com-
pelling explanation, consistent with the observed data, for
both the failure of the 1996 IEM as well as for why that
failure is so unique.

We feel that this work opens up new doors in the study of
pricing dynamics. Models of markets often postulate looking
only at equilibria, and indeed when these states are unique,
attractive, and prescriptive such models can be compelling.
However, the modeling compromises one makes in achieving
these goals, such as ascribing perfect rationality to agents or
completely ignoring dynamism, can be unrealistic. We know
from traditional artificial intelligence that asynchronous set-
tings can produce different emergent properties than syn-
chronous settings (e.g., Huberman and Glance [1993]), and
we know from theoretical computer science that there are
significant differences between settings in which an adver-
sary orders input and settings in which that input arrives
randomly. This intuition proved correct when applied to
our study of markets. The similarity between these results
from the computer science literature and our findings sug-
gests techniques from computer science will be fruitful in the
future study of markets.
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